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LElTER TO THE EDlTOR 

On the Hamiltonian structure of ZD ODE possessing an invariant 
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PMMSlCNRS13A Avenue Recherche Scientilique, 45071 OrlCans Cedex 2, France 

Received 21 August 1992 

Abstrset. We discuss the Hamiltonian ~tmcture with respect to the canonical bracket for 
a 2 0  dynamical system and prove that this stmcture can be obtained simply with a rescaling 
of the independent variable. The rescaling will provide a Hamiltonian when a time- 
independent invariant is known, the Hamiltonian coinciding with the invariant. Applica- 
tions to different systems of ODE in two dimensions are presented. 

In two recent papers Nutku [ 1,2] succeeded in finding the Hamiltonian structure of 
several dynamical systems for which the naive criterion for the existence of Hamiltonian 
structure fails. The condition for such a possibility was the existence of invariants of 
the motion (one or two if the dimension of the systems is two or three respectively). 
Then he was able to associate structure functions [3] to each dynamical system he 
considered, these functions allowing him to cast the systems in a Hamiltonian structure 
with respect to a generalized Poisson bracket. Here we are concerned with the Hamil- 
tonian structure with respect to the canonical bracket and prove that this structure can 
be obtained simply with a rescaling of the independent variable (the time). The rescaling 
will provide a Hamiltonian to any two-dimensional dynamical system for which a 
time-independent invariant is known and, as expected, we find that, then, the Hamil- 
tonian is simply the invariant. Several applications are applied to different systems of 
2~ Lotka-Voltema (LV) equations for which one time-independent invariant is known 
[4]. The theory is extended to the case of a time-dependent invariant which can be 
rescaled to exhibit a time-independent form. The letter is organized as follows. It starts 
by presenting the general results concerning the systems of ODE followed by three 
applications to LV possessing invariants. One of these concerns the 2~ LV system studied 
by Nutku for which we deduce the Hamiltonian formalism, and investigate the period 
while the others concern more general LV systems for which invariants can be found. 

We begin by discussing a general result on systems of ODE. 

Theorem. Any two-dimensional system of ODE possessing a time-independent invariant 
can be written in a Hamiltonian form and the Hamiltonian is the invariant. 

ProoJ Let us consider a dynamical system 

Assume the existence of a time-independent first integral I ( x ,  y )  and consequently write 
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Introducing a new time 0 one obtains 

dy d l d x  1 
d 0  ax d 0  a l l a y '  

- 

If we define dx/d0  = dI/dy then we have dy/d0= - d I / a x  and the system of these 
equations constitutes the Hamiltonian form of system (1) with H ( x ,  y)  = I ( x ,  y). In 
fact dx/d0 = a l l a y  defines the new time element dfJ. One can write it as 

and as y is a function of x and I, the relation between 0 and t is reduced to a quadrature. 
One can similarly 'label' one trajectory I with d 0  =dx/(dl/ay).  

Note that in the original time the system can be written with (3) as follows 

dy J- aH d x  aH 
d t  ay d t  a x  

-= - -= J- (4) 

Following Olver [3], system (4) can be  considered as Hamiltonian with respect to a 
generalized Poisson bracket, J playing the role of the structure function. The bracket 

-fi is a sT&-aot!: :ea!-;,a!ned fnnctien and 3H E J .  v-y 
is the vector field with the structure matrix 

defined as {.".'i) = V*fi. &.H 

The introduction of the new time 0 avoids the use of this structured form of the 
Hamiltonian system as it produces directly the canonical form. 

Let us apply the preceding results t o  the first case reported by Nutku [l]  of the LV 
system where the self-interaction terms are zero, namely 

*= (a'+b'x)y dx  
-= (a  + by)x 
dt d t  ( 5 )  

with a, b'> 0 and a', b <O. Without any condition among these parameters, this system 
admits the well known integral (see for instance [SI) 

I = a In y +  by- a ' l n  x-b'x. 

J = x y  de  = xy dt. (7) 

With this value for J and (4) we obtain the Nutku's result. Here and in terms of the 
new time 0 we deduce 

with - a + b y  a'+ b'x 
g = x  f =- 

Y 
(9 )  
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where we remark that f is a function only of y and f of x. The consequence. on the 
evolution of an element, of the phase space is straightforward. In fact it is well known 
that the phase space volume element A satisfies the differential equation . 

1 dA Jf ag +--. 
A d f  ax ay 
-_=- 

Tzkicg Into zCrOnnt ( 5 ) ,  we rewrite !!O) 2s 

1 dA 1 dx 1 dy 
f-  -. 

A d f  x d f  y d f  
_ _ = _ -  

In the original time coordinate t, there is no conservation of the phase space volume 
but, instead, we obtain its periodic evolution, the maxima and minima of which happen 

line 
..,he.. +La "-.---A .rn-h---f .,"...--I- A..&..-II.. IL . ."~  -_I -"-- I -  --" t---+-A -" thn 
W.LGill L l l C  DL.c"II" Illb.11"c71 "1 \", CLlllL.rl>. rrb,uaLry, L,,GJT T,..L,GIIILlIJ a,- I"C(ILG" "ll L1.C 

u + by + U ' +  b'x = O  

provided of course, that the volume element is sufficiently small in order that the 
relation (10) be valid. A computation showing this property appears in figure 1. 

T-. rl.- .._... *:-.-a +ha e-..-+:-..m -F n..-l..+:--. -0 h -*-A. 
111 111G L.CW L l l l l C  L . L I  Cy"YL.".." "1 * ~ " . " L I " I I  "I Y LCII" .  

As f is independent of x and is independent of y, we immediately find the well 
known conservation of the volume element 8 A  = 0. 

Note that the time 0 is now dependent on the trajectories since d9  = xy df and the 
phase space volume conservation is obtained by selecting the systems at different times 
L From a mathematical point of view 9 and f play the same role while from a physical 
point of view we like to come back to the original f. 

x 

Figure 1. Evolution ofa volume element in phase space: equation ( 5 )  with D = 1.2, a'= -1, 
b = - 3 ,  b '= l .  
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Let us integrate over one period the equations (5) multiplied by dr: 

a f x d t + b  f xy dt=O a ' $  y d t +  b' f xy d t  = O .  

Recalling from (7) that the new time is dB = xy dt, one can define the new period as 

0=  4 xy dt. (14)  
J 

Let us rewrite equations (5) in the form 

_-= a+by  _ _ =  dy a'+b'x. 1 dx 

x d t  Y dt 

Then multiply hy d! and integrate over nne perind. we see immediately that the fin! 
members cancel and if T is the period in the old time, we have 

a T + b  y d t = O  a'T+ b' $I x d t  =O. ( 1 5 )  + 
Eliminating I x d t  and $ y d t  between ( 1 5 )  and (13) and using (14)  results in 

bb'O = aa'T. 

It is interesting to remark that 8 and T are proportional. It is well known that if x, 
and yo (the initial values) +O, then T goes to infinity and consequently so does 0. But 
while, in the old system, this was due to the slowness of the motion near the origin, 
in the new system this slowness disappears since d e =  xy d t  but now it is far from the 
origin that the slowness appears and altogether the two effects cancel within a constant 
factor. 

The more general two species LV system, under invariant conditions type 111, can 
be written in the following form with the essential parameters a, a', R, R': 

dx  dY -= a'y(l+ R ' x f y ) .  -- 
dt 

- ax( 1 +x+ R y )  
dt  

This system admits a first integral [4]: 

r = x g y e ( i + x + y )  

with the following values for 01 and p 
a - R'a' a'-  Ra  

= a'( RR' - 1) ' 
a =  

a ( R R ' - I )  

An existence condition for this first integral is given by the following relation 

R a + R ' a ' = a + a ' .  

The preceding condition implies 

a + 1 =  R ' a  p +  1 = Kp. 

Using this property in the computation of the partial derivatives of I over x and y,  
the LV system takes the form (8) with 

f=ps"ye-'(l + x +  R y )  = -ax"-'ye(l  + R ' x + y ) .  (21)  
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Finally the relation between the ‘old’ and the ‘new’ time now reads: 

Again the relation between 0 and f depends on the trajectory (i.e. on the value of the 
invariant). To a time 0 corresponds different times f and it is this introduction of a 
time attached to the trajectory that is responsible for the conservation of the phase 
space volume. Note that the case where a = -a’= 1, R = R‘= 2, which from (20) 
corresponds to a = p = 1, is the case where (16)  has the Hamiltonian form in the 
original time r. 

As before, in the original coordinates, the evolution of the phase space volume is 
computed straightforwardly as follows 

af dg 
J X  ay 
-+- = M+ a’y + a (  1 + x  + R y )  + a’( 1 + R‘x + y )  

1 dx 1 dy 1 dA 
x dr y dt A df 

= o x + n ‘ y + - - + -  -=- - 

using (10). One obtains 

(22) 

In the simplified LV system (3, we have seen that A is periodic and comes back to its 
original value after a period. Let us show that this is also true in the general case. For 
that, rewrite equations (16)  in the form 

- _ =  dy l + R ’ x + y  1 dx 
I + x + R y  _ _ =  

M d t  a’y dr 

Let us multiply by dr and integrate on a cycle. Let us call T the period and X and Y 
the corresponding integrals x dr and y dt. Now if we remark that the first members 
are exact differentials we have 

T + X + R Y  = 0 T +  Y + R’X = 0 

from which we obtain 

R - 1  R’ -  1 
X = T -  Y = T -  

1 - RR’ 1 - R R ’  

and consequently 

a X + a ’ Y  = O  (23) 

taking into account (19). Now from (22). the infinitesimal volume recovers its initial 
value after a cycle. As before, the property cannot be extended to finite volumes since 
the different points do not have the same period. Contrarily in the rescaled space there 
is conservation of the phase space volume, as expected from a Hamiltonian system: 
the points do not always have the same period but the volume element is conserved 
at any time. One can proceed without difficulty from the conservation of the infinitesimal 
volume to a finite volume. 
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For our next application we consider an Lv system with first integral conditions of 
type 11. When the condition is 

a = a '  (24) 

then the LV system (16) admits the following time-dependent invariant [4]: 

I = x " y e ( A x + B y )  e" 

where n and p are given by (18) with a = a' and 

A = R ' - 1  B = l - R  s =  - a ( l + a + p ) .  

Now, with the following rescaling 

i x e-"' f = y e-"' 

the time-dependence in (25) disappears using the definition (26) of s. The invariant 
now reads 

I = ?"Fe( A? + BY) 

and the LV system becomes 

Now the Hamiltonian form is obtained with 

JI -o-,-e 
ax 

g= -;=x y [A(a+l)<+BnF]e'" 

and the relation between the 'old' and the 'new' time from (3) and (4) is 

We have found the particular role of a time-independent integral of a two- 
dimensional dynamical system; it allows us to transform the system into a Hamiltonian 
one. We note that only the timescale must change for this purpose. The examples are 
on the LV equations and the main results are the following. Concerning the phase 
space volume, in the original space the volume fluctuates on a cycle passing through 
maxima and minima. For the systems having time-dependent invariants, one can try 
a rescaling of the dependent variables in order to transform the invariant in a time- 
independent form, as in the case of the LV system when it models a competitive process. 
Although not done here, one can guess a Hamiltonian character when two invertible 
invariants are known for a system of three equations. This is due to the fact that the 
existence of an invariant reduces the complexity of a dynamical system by one unit, 
the result of which can be generalized. 
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